PDF version

Proof that $\sum\limits_{n=1}^{\infty}\dfrac{1}{n^2}=\dfrac{\pi^2}{6}$

The proof follows Proof 11 of \emph{Evaluating $\zeta(2)$} at Evaluating $\zeta(2)$

 

AB3 page 33 shows that if \[I_n=\int_0^{\pi/2}\sin^nx\,dx\] then \[I_{2n}=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\dots\cdot\frac{2n-1}{2n}\cdot\frac{\pi}{2}\] It follows that \begin{align} I_{2n}&=\frac{1\cdot2\cdot3\cdot\dots\cdot(2n-1)\cdot2n}{(2\cdot4\cdot6\cdot\dots\cdot2n)^2}\cdot\frac{\pi}{2}\\\\ &=\frac{1\cdot2\cdot3\cdot\dots\cdot(2n-1)\cdot2n}{(2^n\cdot1\cdot2\cdot3\cdot\dots\cdot n)^2}\cdot\frac{\pi}{2}\\\\ &=\frac{(2n)!}{4^n(n!)^2}\frac{\pi}{2} \end{align} (1) Substituting $x$ by $\pi/2-x$ shows that $I_n=\int_0^{\pi/2}\cos^nx\,dx$. Then use integration of parts to give \begin{align*} I_{2n}&=\left[x\cos^{2n}x\right]_0^{\pi/2}+2n\int_0^{\pi/2}x\sin x\cos^{2n-1}x\,dx\\[2ex] &=n\left[x^2\sin x\cos^{2n-1}x\right]_0^{\pi/2}-n\int_0^{\pi/2}x^2\cos^{2n} x-(2n-1)\sin^2x\cos^{2n-2}x\,dx\\[2ex] &=n(2n-1)J_{n-1}-2n^2J_n \end{align*} where $\displaystyle J_n=\int_0^{\pi/2}x^2\cos^{2n}x\,dx$.
Hence \[\frac{(2n)!}{4^n(n!)^2}\frac{\pi}{2}=n(2n-1)J_{n-1}-2n^2J_n\] Multiply both sides by $\dfrac{4^n(n!)^2}{2n^2(2n)!}$ to get \begin{align*} \frac{\pi}{4n^2}&=\frac{4^n(n!)^2}{2n^2(2n)!}n(2n-1)J_{n-1}-\frac{4^n(n!)^2}{2n^2(2n)!}2n^2J_n\\\\ &=\frac{4^n}{4(2n)!}\left(\frac{n!}{n}\right)^22n(2n-1)J_{n-1}-\frac{4^n(n!)^2}{(2n)!}J_n\\\\ &=\frac{4^{n-1}((n-1)!)^2}{(2n-2)!}J_{n-1}-\frac{4^n(n!)^2}{(2n)!}J_n \end{align*} Now we use the telescoping series trick AA3 page 9 and get \[\sum_{n=1}^N\frac{\pi}{4n^2}=J_0-\frac{4^N(N!)^2}{(2N)!}J_N\] We will show that \[\lim_{N\to\infty}\frac{4^N(N!)^2}{(2N)!}J_N=0\] from which it will follow that \[\sum_{n=1}^\infty\frac{\pi}{4n^2}=J_0=\int_0^{\pi/2}x^2\,dx=\frac{\pi^3}{24}\] so, using the multiple rule for series and multiplying both side by $4/\pi$ we get \[\sum_{n=1}^\infty\frac{1}{n^2}=\frac{\pi^2}{6}\] as we wanted. \medskip \\ \textbf{To show that} \[\lim_{N\to\infty}\frac{4^N(N!)^2}{(2N)!}J_N=0\] we use the \emph{Inequalities for integrals} method of AB3 Section 3.1. We also use the fact that $x\leq\frac{\pi}{2}\sin x$ for $0 < x < \frac{\pi}{2}$ (proved later) with the Inequality Rule to get \begin{align*} J_N&=\int_0^{\pi/2}N^2\cos^{2N}x\,dx\\\\ &\leq\int_0^{\pi/2}\left(\frac{\pi}{2}\sin x\right)^2\cos^{2N}x\,dx\\\\ &=\frac{\pi^2}{4}\int_0^{\pi/2}\sin^2x\cos^{2N}x\,dx\\\\ &=\frac{\pi^2}{4}\int_0^{\pi/2}(1-\cos^2x)\cos^{2N}x\,dx\\\\ &=\frac{\pi^2}{4}\left(\int_0^{\pi/2}\cos^{2N}x\,dx-\int_0^{\pi/2}\cos^{2N+2}x\,dx\right)\\\\ &=\frac{\pi^2}{4}\left(I_{2N}-I_{2N+2}\right)\\\\ &=\frac{\pi^2}{4}\left(I_{2N}-\frac{2N+1}{2N+2}I_{2N}\right)\quad\text{by AB3 Exercise 2.3(b)}\\\\ &=\frac{\pi^2}{4}\frac{1}{2n+2}I_{2N} \end{align*} So \begin{align*} \frac{4^N(N!)^2}{(2N)!}J_N&\leq\frac{4^N(N!)^2}{(2N)!}\frac{\pi^2}{4}\frac{1}{2n+2}I_{2N}\\\\ &=\frac{\pi^2}{8(N+1)}\frac{4^N(N!)^2}{(2N)!}I_{2N}\\\\ &=\frac{\pi^2}{8(N+1)}\frac{\pi}{2}\quad\text{by (1)}\\\\ &=\frac{\pi^3}{16(N+1)} \end{align*} Thus \[0< J_N\leq\frac{\pi^3}{16}\frac{1}{n+1}\] By the Squeeze Rule for sequences it follows that \[\lim_{N\to\infty}\frac{4^N(N!)^2}{(2N)!}J_N=0\] and we are done. \medskip \\ \textbf{Finally we must show} \[x\leq\frac{\pi}{2}\sin x \text{ for }0< x<\frac{\pi}{2}\] which we can do using Strategy 4.1 of AB2. Let \[f(x)=\frac{x}{\sin x}\text{ for } 0< x<\frac{\pi}{2}.\] From now on assume $0< x<\frac{\pi}{2}$ \[f'(x)=\frac{\sin x-x\cos x}{x^2}\geq 0 \text{ as } \cos x\leq\frac{\sin x}{x} \text{ by AB1 page 7}\] so $f$ is increasing on $(0,\frac{\pi}{2})$ and hence, on this interval, \[f(x)\leq f\left(\frac{\pi}{2}\right)=\frac{\pi/2}{\sin \pi/2}=\frac{\pi}{2}.\] Thus \[\frac{x}{\sin x}\leq\frac{\pi}{2}\] so \[x\leq\frac{\pi}{2}\sin x.\]