Proof that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
The proof follows Proof 11 of Evaluating $\zeta(2)$ at
http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf
AB3 page 33 shows that if

$$
I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

then

$$
I_{2 n}=\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \ldots \ldots \frac{2 n-1}{2 n} \cdot \frac{\pi}{2}
$$

It follows that

$$
\begin{align*}
I_{2 n} & =\frac{1 \cdot 2 \cdot 3 \cdots \cdots(2 n-1) \cdot 2 n}{(2 \cdot 4 \cdot 6 \cdots \cdots 2 n)^{2}} \cdot \frac{\pi}{2} \\
& =\frac{1 \cdot 2 \cdot 3 \cdots \cdots(2 n-1) \cdot 2 n}{\left(2^{n} \cdot 1 \cdot 2 \cdot 3 \cdots \cdots n\right)^{2}} \cdot \frac{\pi}{2} \\
& =\frac{(2 n)!}{4^{n}(n!)^{2}} \frac{\pi}{2} \tag{1}
\end{align*}
$$

Substituting x by $\pi / 2-x$ shows that $I_{n}=\int_{0}^{\pi / 2} \cos ^{n} x d x$. Then use integration of parts to give

$$
\begin{aligned}
I_{2 n} & =\left[x \cos ^{2 n} x\right]_{0}^{\pi / 2}+2 n \int_{0}^{\pi / 2} x \sin x \cos ^{2 n-1} x d x \\
& =n\left[x^{2} \sin x \cos ^{2 n-1} x\right]_{0}^{\pi / 2}-n \int_{0}^{\pi / 2} x^{2} \cos ^{2 n} x-(2 n-1) \sin ^{2} x \cos ^{2 n-2} x d x \\
& =n(2 n-1) J_{n-1}-2 n^{2} J_{n}
\end{aligned}
$$

where $J_{n}=\int_{0}^{\pi / 2} x^{2} \cos ^{2 n} x d x$.
Hence

$$
\frac{(2 n)!}{4^{n}(n!)^{2}} \frac{\pi}{2}=n(2 n-1) J_{n-1}-2 n^{2} J_{n}
$$

Multiply both sides by $\frac{4^{n}(n!)^{2}}{2 n^{2}(2 n)!}$ to get

$$
\begin{aligned}
\frac{\pi}{4 n^{2}} & =\frac{4^{n}(n!)^{2}}{2 n^{2}(2 n)!} n(2 n-1) J_{n-1}-\frac{4^{n}(n!)^{2}}{2 n^{2}(2 n)!} 2 n^{2} J_{n} \\
& =\frac{4^{n}}{4(2 n)!}\left(\frac{n!}{n}\right)^{2} 2 n(2 n-1) J_{n-1}-\frac{4^{n}(n!)^{2}}{(2 n)!} J_{n} \\
& =\frac{4^{n-1}((n-1)!)^{2}}{(2 n-2)!} J_{n-1}-\frac{4^{n}(n!)^{2}}{(2 n)!} J_{n}
\end{aligned}
$$

Now we use the telescoping series trick AA3 page 9 and get

$$
\sum_{n=1}^{N} \frac{\pi}{4 n^{2}}=J_{0}-\frac{4^{N}(N!)^{2}}{(2 N)!} J_{N}
$$

We will show that

$$
\lim _{N \rightarrow \infty} \frac{4^{N}(N!)^{2}}{(2 N)!} J_{N}=0
$$

from which it will follow that

$$
\sum_{n=1}^{\infty} \frac{\pi}{4 n^{2}}=J_{0}=\int_{0}^{\pi / 2} x^{2} d x=\frac{\pi^{3}}{24}
$$

so, using the multiple rule for series and multiplying both side by $4 / \pi$ we get

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

as we wanted.

To show that

$$
\lim _{N \rightarrow \infty} \frac{4^{N}(N!)^{2}}{(2 N)!} J_{N}=0
$$

we use the Inequalities for integrals method of AB3 Section 3.1.
We also use the fact that $x \leq \frac{\pi}{2} \sin x$ for $0<x<\frac{\pi}{2}$ (proved later) with the Inequality Rule to get

$$
\begin{aligned}
J_{N} & =\int_{0}^{\pi / 2} N^{2} \cos ^{2 N} x d x \\
& \leq \int_{0}^{\pi / 2}\left(\frac{\pi}{2} \sin x\right)^{2} \cos ^{2 N} x d x \\
& =\frac{\pi^{2}}{4} \int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2 N} x d x \\
& =\frac{\pi^{2}}{4} \int_{0}^{\pi / 2}\left(1-\cos ^{2} x\right) \cos ^{2 N} x d x \\
& =\frac{\pi^{2}}{4}\left(\int_{0}^{\pi / 2} \cos ^{2 N} x d x-\int_{0}^{\pi / 2} \cos ^{2 N+2} x d x\right) \\
& =\frac{\pi^{2}}{4}\left(I_{2 N}-I_{2 N+2}\right) \\
& =\frac{\pi^{2}}{4}\left(I_{2 N}-\frac{2 N+1}{2 N+2} I_{2 N}\right) \quad \text { by AB3 Exercise 2.3(b) } \\
& =\frac{\pi^{2}}{4} \frac{1}{2 n+2} I_{2 N}
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{4^{N}(N!)^{2}}{(2 N)!} J_{N} & \leq \frac{4^{N}(N!)^{2}}{(2 N)!} \frac{\pi^{2}}{4} \frac{1}{2 n+2} I_{2 N} \\
& =\frac{\pi^{2}}{8(N+1)} \frac{4^{N}(N!)^{2}}{(2 N)!} I_{2 N} \\
& =\frac{\pi^{2}}{8(N+1)} \frac{\pi}{2} \quad \text { by }(1) \\
& =\frac{\pi^{3}}{16(N+1)}
\end{aligned}
$$

Thus

$$
0<J_{N} \leq \frac{\pi^{3}}{16} \frac{1}{n+1}
$$

By the Squeeze Rule for sequences it follows that

$$
\lim _{N \rightarrow \infty} \frac{4^{N}(N!)^{2}}{(2 N)!} J_{N}=0
$$

and we are done.
Finally we must show

$$
x \leq \frac{\pi}{2} \sin x \text { for } 0<x<\frac{\pi}{2}
$$

which we can do using Strategy 4.1 of AB2. Let

$$
f(x)=\frac{x}{\sin x} \text { for } 0<x<\frac{\pi}{2} .
$$

From now on assume $0<x<\frac{\pi}{2}$

$$
f^{\prime}(x)=\frac{\sin x-x \cos x}{x^{2}} \geq 0 \text { as } \cos x \leq \frac{\sin x}{x} \text { by AB1 page } 7
$$

so f is increasing on $\left(0, \frac{\pi}{2}\right)$ and hence, on this interval,

$$
f(x) \leq f\left(\frac{\pi}{2}\right)=\frac{\pi / 2}{\sin \pi / 2}=\frac{\pi}{2}
$$

Thus

$$
\frac{x}{\sin x} \leq \frac{\pi}{2}
$$

so

$$
x \leq \frac{\pi}{2} \sin x
$$

