PDF version
\begin{theorem}
If $g$ is an element of $G=S_n$ then $C_G(g)=\langle g\rangle$ if and only if the cycles of $g$ are of unequal coprime lengths.\\
Alternatively, $C_G(g)=\langle g\rangle$ if and only if $g$ has cycles of coprime length with at most one 1-cycle.
\end{theorem}
\begin{proof}
Since powers of $g$ centralise $g$ it follows that $\langle g\rangle\subseteq C_G(g)$ so
\begin{align}
C_G(g)=\langle g\rangle\iff \lvert\langle g\rangle\rvert=\lvert C_G(g)\rvert\iff\lvert g\rvert=\lvert C_G(g)\rvert
\end{align}
(1)
Let $G$ act on itself by conjugation. Then $xgx^{-1} = x\iff xg=gx$ so
\begin{equation}
\Stab(g)=C_G(g)
\end{equation}
(2)
\begin{align*}
\lvert\Orb(g)\rvert&=\text{\small the number of distinct conjugates of g}\\
&=\text{\small the number of permutations with the same cycle structure as }g
\end{align*}
Let $a$ be the product of the lengths of the cycles of $g$\\
Let $b$ be the number of cycles of equal length.\\
Let $l$ be the least common multiple of the lengths of the cycles, $\lvert g\rvert=l\leq a$.\\\\
Then the number of permutations with the same cycle structure as $g$ is
\begin{align*}
\frac{n!}{ab}=\frac{\lvert G\rvert}{ab}
\end{align*}
Hence
\begin{equation}
\lvert\Orb(g)\rvert=\frac{\lvert G\rvert}{ab}
\end{equation}
(3)
By the Orbit-Stabiliser theorem, $\lvert\Orb(g)\rvert\times\lvert\Stab(g)\rvert=\lvert G\rvert$ so by (3)
\begin{align*}
\lvert\Stab(g)\rvert=\frac{\lvert G\rvert}{\lvert\Orb(g)\rvert}=\frac{\lvert G\rvert}{\lvert G\rvert/ab}=ab\geq\lvert g\rvert b\geq\lvert g\rvert=l
\end{align*}
and it follows that
\begin{align}
\lvert\Stab(g)\rvert=\lvert g \rvert\iff a = l \text{ and } b = 1
\end{align}
(4)
But
\begin{align}
a=l\iff g\text{ has coprime cycle lengths}\\
b=1 \iff g \text{ has unequal cycle lengths}
\end{align}
(5)
(6)
The result now follows from (1), (2), (4), (5) and (6).
\[
C_G(g)=\langle g\rangle\iff\lvert\Stab(g)\rvert=\lvert g \rvert\iff\text{the cycles of $g$ are of unequal coprime lengths}
\]
Cycles of coprime length will have unequal lengths unless they are 1-cycles. Hence we may replace \textit{unequal} by \textit{at most one 1-cycle}.
\end{proof}