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Integration

Theorem 1 If f is integrable on [a, b] and g differs from f on at most a finite number

of points in [a, b] then g is integrable on [a, b] and
∫ b
a g =

∫ b
a f

Proof.
Suppose first that g1 differs from f at one point c ∈ [a, b]. Let h = g1 − f on [a, b].
Then

h(x) =

{
0 x ̸= c

k x = c

for some k ∈ R.

Let P be the standard partition of [a, b] so δxi = (b − a)/n for i = 1, . . . , n. Suppose
that c is in the subpartition [xj−1, xj ]. If k > 0 then mj = 0,Mj = k and if k < 0 then
mj = k,Mj = 0.

We will assume k > 0 as the k < 0 is virtually identical. Since mi = Mi = 0 for i ̸= j
we have:

L(h, P ) =
n∑

i=1

miδxi =
n∑

i=1

0.
b− a

n
= 0 → 0 as n → ∞

U(h, P ) =
n∑

i=1

Miδxi =

∑
i ̸=j

0.
b− a

n

+ k.
b− a

n
= k.

b− a

n
→ 0 as n → ∞

Hence h is integrable and
∫ b
a h = 0 (Strategy 1.1 HB p89). Then by the Combination

Rules, g1 = (g1 − f) + f = h + f is integrable on [a, b] and
∫ b
a g1 =

∫ b
a h +

∫ b
a f =

0 +
∫ b
a f =

∫ b
a f .

Now let g2 differ from f at c and one other point, so g2 differs from g1 at one point.

From the above result, g2 is integrable on [a, b] and
∫ b
a g2 =

∫ b
a g1 =

∫ b
a f .

Continue in this way defining g1, g2, . . . , gm with gm = g then g1, g2, . . . , gm are

integrable on [a, b] and
∫ b
a g =

∫ b
a gm = · · · =

∫ b
a g1 =

∫ b
a f proving the result. �

(You can use
induction)

Remark

The Dirichlet function is not integrable on [0, 1] (AB3 Frame 13 p11) which shows that
the result is not true if g differs from an integrable (or even a continuous) function f
on a countable number of points but if we assume g itself is integrable on [a,b] then a
countable number of discontinuities1 doesn’t affect the integral.

Theorem 2 If f is integrable on [a, b] and g differs from f on at most a countable

number of points in [a, b] and g is integrable on [a, b] then
∫ b
a g =

∫ b
a f .

Proof.
Again, let h = g − f and let C = {c1, c2, . . . , cn . . . } be the countable set of points
where f and g differ. Then h(x) = 0 for x /∈ C.

The function |h| is also 0 for x /∈ C and |h|(x) ≥ 0 for all x ∈ [a, b].

1 This means that the discontinuities can be put in a sequence
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Let Pn be the standard partition of [a, b] with δxi = (b − a)/n, i = 1, 2, . . . , n. Since
each subinterval [xi−1, xi] is uncountable it contains points not in C where |h|(x) = 0.
Hence mi = 0 for i = 1, 2, . . . , n and thus

L(|h|, Pn) =

n∑
1=1

miδxi =

n∑
1=1

0.(b− a)/n = 0

Since f, g are integrable on [a, b] so is h by the Combination Rules and by the Modulus
Rule |h| is also integrable on [a, b]. Thus∫ b

a
|h| = lim

n→∞
L(|h|, Pn) = lim

n→∞
0 = 0.

Finally, by the Triangle Inequality,∣∣∣∣∫ b

a
h

∣∣∣∣ ≤ ∫ b

a
|h| = 0

So,
∫ b
a h = 0 and, as before,

∫ b
a g =

∫ b
a f . �

Theorem 3 There’s no arbitrary constant for a primitive.

Proof.
In M208 a primitive is a function so it cannot be multi-valued and hence you cannot
use a ‘constant’ that varies.

Also the constant depends on the interval so for example:

F (x) =


x2 x < 0

x2 + 1 0 < x < 1

x2 − 2 x > 1

is defined on R−{0, 1}, and is differentiable at every point of its domain and F ′(x) = 2x
for x ∈ R− {0, 1}

F is a primitive of f(x) = 2x on (0, 1) and similarly F is a primitive of f on (−∞, 0)
and on (1,∞). But there’s no c for which F (x) = x2 + c for all x ∈ R− {0, 1}. �

Theorem 4 Let f be the function with domain R and rule

f(x) =

{
0 x ̸= 0,

1 x = 0.

then f is integrable on any interval that includes 0 but does not have a primitive on
that interval.
Thus f has a definite integral but no indefinite integral on an interval that includes 0.

Proof.
Since f differs from the zero function at one point, Theorem 1 shows that f is integrable
on any interval [a, b] and

∫ b
a f = 0. Suppose, for a contradiction, that F is a primitive

of f on [a, b]. Then by definition

F ′(x) = f(x), x ∈ [a, b] (1)
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and by the Fundamental Theorem of calculus∫ x

a
f = F (x)− F (a)

for any x ∈ R and hence any x ∈ [a, b].

Since
∫ x
a f = 0 it follows that

F (x) = F (a), x ∈ [a, b]

Hence F is constant on [a, b] so is differentiable on [a, b] with F ′(x) = 0, x ∈ [a, b]
which contradicts (1) since f(0) = 1 and 0 ∈ [a, b].
Hence F does not exist so f does not have a primitive on [a, b]. �

Theorem 5 Let f be the Riemann function which has domain R and rule

f(x) =

{
1/q if x = p/q, q > 0 with p/q is expressed in lowest terms,

0 if x is irrational.

then f is integrable on any interval I = [a, b],
∫ b
a f = 0 but does not have a primitive

on I.

Proof.
We only need to show f is integrable on [a, b] and

∫ b
a f = 0. Then, as in proof of

Theorem 3, a primitive F would have to satisfy F ′(x) = 0 on I so F does not exist.
We use a similar method to showing f is continuous on the rationals used in Theorem
3.3, AB1 to find the Riemann sums.

Let P be a partition of I then since f(x) ≥ 0 for all x ∈ I, L(f, P ) = 0 for any P .

Let n be a positive integer. There are only a finite number of integers q with q < n and
since I is finite, only a finite number of points p/q with f(p/q) = 1/q > 1/n. Suppose
these points are x1, x2, . . . , xk.

Consider the subintervals [xi − 1/2kN, xi + 1/2kN ], i = 1, . . . , k. Then the width of
each subinterval δx = 1/kn and M < 1 since f(x) < 1 for all x. These intervals
contribute an upper sum of

∑k
i=1 1/kn.1 = 1/n

Divide the rest of the interval I into subintervals of width 1/n. These only include
points p/q with q ≤ 1/N so have upper sum of less than

∑
δx.1/n < (b− a)/n.

Hence
U(f, P ) < 1/n+ (b− a)/n → 0 as n → ∞.
∥P∥ = max{1/kn, 1/n} = 1/n → 0 as n → ∞.
L(f, P ) = 0
f is bounded

By Theorem 1.3 HB p89, f is integrable on I = [a, b] and
∫ b
a f = 0 �

Remark

The Riemann function f in theorem 5 shows that differentiation is not always the
inverse of integration. Define the function g with domain R and rule

g(x) =

∫ x

0
f(t) dt

Then by Theorem 5, g(x) = 0, x ∈ R hence g′(x) = 0, x ∈ R. This means that
g′(x) = f(x) only when x is irrational.
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Theorem 6 Let F be the function with domain R and rule

F (x) =

{
x2 sin(1/x2) x ̸= 0,

0 x = 0.

then F is differentiable on any interval. Let f = F ′ then f has a primitive on any
interval containing 0 but is not integrable on that interval.
Thus f has an indefinite integral but no definite integral on any interval containing 0.

Proof.
At 0 we have

|Q(h)| =
∣∣∣∣F (0 + h)− F (0)

h

∣∣∣∣ = ∣∣∣∣h2 sin(1/h2)− 0

h

∣∣∣∣ = ∣∣h sin(1/h2)∣∣ ≤ |h|

hence
−|h| ≤ Q(h) ≤ |h|

By the Squeeze Rule for limits, lim
h→0

Q(h) = 0 so F is differentiable at 0 with F ′(0) = 0.

With the Combination Rules for non-zero points we get

f(x) = F ′(x) =

{
2x sin(1/x2)− 2 cos(1/x2)

x x ̸= 0

0 x = 0

By definition F is a primitive of f on any interval.

However, it is clear from the 2 cos(1/x2)
x term, that f is unbounded on any interval con-

taining 0 (*) and this will mean it cannot be integrable on that interval since it will be
unbounded on an at least one subinterval. Thus one or both of lim

n→∞
L(f, Pn), lim

n→∞
U(f, Pn)

don’t exist so f is not integrable by Theorem 1.2 HB p89. �

* To see this, any interval containing 0 will include x = 1/
√
2nπ for sufficiently large

n and then f(x) = −2
√
2nπ.

Theorem 7 Let f be the Dirichlet function which has domain R and rule

f(x) =

{
1 if x is irrational,

0 if x is rational.

then f is not integrable on any interval I = [a, b] and does not have a primitive on I.

Proof.
If P is any partition of I = [a, b] then L(f, P ) = 0 and U(f, P ) = 1 and

0 =

∫ b

a
f ̸=

∫ b

a
f = 1

so f is not integrable on I.

Suppose, for a contradiction, that f has a primitive F on I so F is differentiable on
[a, b] with F ′(x) = f(x), x ∈ [a, b].
[Note: As F is differentiable at a and b, F is in fact defined on an open interval
containing I].
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If I ′ = [a′, b′] is a subinterval of I ie a ≤ a′ ≤ b′ ≤ b, then F is differentiable on [a′, b′]
with F ′(x) = f(x), x ∈ [a′, b′].

We can choose a′, b′ with a′ irrational, b′ rational. Without loss of generality, we can
drop the dashes and assume a is irrational and b is rational.

Define a function g on [a, b] by g(x) = F (x)− 1
2x, x ∈ [a, b]. Then as F is differentiable

on [a, b] so is g. Since g is continuous on [a, b], by the Extreme Value Theorem (HB p71)
g has a maximum value at some c in [a, b]. If the maximum is also a local maximum
then, as g is differentiable at c, by the Local Extremum Theorem (HB p87), g′(c) = 0.

But g′(x) = F ′(x) − 1
2 = f(x) − 1

2 = −1
2 or 1

2 for all x ∈ I, so the maximum is not
local so must be at a or b (HB Corollary p87).

Thus we have, for all x ∈ [a, b], either g(x) ≤ g(a) or g(x) ≤ g(b). This means that for
all x ∈ [a, b]

either

g(x) ≤ g(a) ⇒ F (x)− 1
2x ≤ F (a)− 1

2a

⇒ F (x)− F (a) ≤ 1
2(x− a)

⇒ F (x)− F (a)

x− a
≤ 1

2
as x ≥ a

⇒ f(a) = F ′(a) = lim
x→a

F (x)− F (a)

x− a
≤ 1

2

or

g(x) ≤ g(b) ⇒ F (x)− 1
2x ≤ F (b)− 1

2b

⇒ F (x)− F (b) ≤ 1
2(x− b)

⇒ F (x)− F (b)

x− b
≥ 1

2
as x ≤ b

⇒ f(b) = F ′(b) = lim
x→b

F (x)− F (b)

x− a
≥ 1

2

Since f(x) = 0 or 1 we have that f(a) = 0 or f(b) = 1 ie a is rational or b is irrational.
This gives us our contradiction. Hence a primitive on I does not exist. �

The counter-examples above are not continuous as continuous functions are well be-
haved.

Theorem 8 If f is continuous on an interval I = [a, b] then f is integrable on I and
has a primitive on I.

Proof.
f is integrable on I by Theorem 1.5 HB p90.

Let F (x) =
∫ x
a f . We show F is a primitive of f on I by showing F ′(x) = f(x) for

x ∈ I. Let

Q(h) =
F (x+ h)− F (x)

h
=

∫ x+h
a f −

∫ x
a f

h
=

∫ x+h
x f

h

using Additivity of Integrals HB p89

Since f is continuous on [a, b] it is continuous on the subinterval [x, x + h] so by the
Extreme Value Theorem HB p71, there exist mh,Mh ∈ [x, x+h] with f(mh) ≤ f(y) ≤
f(Mh) for all y ∈ [x, x+ h].
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By the Inequality Rule (b) HB p91 we have f(mh)h ≤
∫ x+h
x f ≤ f(Mh)h so, dividing

by h, f(mh) ≤ Q(h) ≤ f(Mh).

Let h → 0 and, since f is continuous on [x, x + h], f(mh), f(Mh) → f(x) so by the
Squeeze Rule for limits, HB p81, lim

h→0
Q(h) = f(x). Hence F is differentiable on I with

F ′(x) = f(x) for x ∈ [a, b], so f is a primitive on I. �

Remark

A function f on an interval I can

1. have a primitive and be integrable (continuous functions, Theorem 8)

2. be integrable but not have a primitive (Theorems 4 & 5)

3. have a primitive and not be integrable (Theorem 6)

4. not have a primitive and not be integrable (Theorem 7).

Continuity of a function at all but a countable number of points means that the func-
tion is still integrable, though as Theorem 5 shows, it may not have a primitive.

Theorem 9 If f is bounded and is continuous on [a, b] except at a countable number
of points then f is integrable on [a, b]

Proof.
Let C = {c1, c2, . . . , cn . . . } be the countable set of points where f may not be contin-
uous. f is bounded (it has to be bounded to be integrable) so let M = max

x∈[a,b]
f(x) and

m = min
x∈[a,b]

f(x).

Let ε > 0 and let δn = ε
3(M−m)2n−1 and consider the intervals In = (cn − δn, cn + δn)

for n = 1, 2, . . . . Then In is an interval centred on cn with length l(In) =
ε

3(M−m)2n .

Now remove all these intervals from [a, b] and we are left with a countable number of
disjoint intervals J1, J2, . . . (each In defines a Jn to its left, plus there may be an extra
J-interval on the right, so still a countable number of J-intervals.

Since the J-intervals are disjoint subsets of [a, b] their total length must be less than
b− a ie

∞∑
i=1

l(Ji) ≤ b− a (2)

The lengths are all positive so the partial sums of this series form an increasing sequence
bounded above, so by the Monotone Convergence Theorem the sequence, and hence
the series, converge. This means that the tail of the series must get arbitrarily small,
since if sn → s then s− sn → 0 where sn is the n-th partial sum.

Hence there is an integer N such that

∞∑
i=N+1

l(Ji) <
ε

3(M −m)
(3)

By assumption f is continuous on each J-interval so is integrable on these intervals.
Hence by Riemann’s Criterion, there exists a sequence of partitions Pi,n of Ji with
U(f, Pi,n)− L(f, Pi,n) → 0. That means there is a partition Pi of Ji with

U(f, Pi)− L(f, Pi) <
ε

3N
(4)
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Let P be the union of the partitions Pi, i = 1, . . . , N plus each of the I-intervals and
remaining J-intervals JN+1, JN+2, . . . . We calculate U(f, P )− L(f, P ).

If Q is an interval then by definition U(f,Q) = sup
x∈Q

f(x).l(Q) < M.l(Q). Similarly

L(f,Q) > m.l(Q) so U(f,Q)− l(f,Q) < (M −m)l(Q).

The partition P consists of two types of intervals:

1. the partitions P1, . . . , PN of J1, . . . , JN ;

2. the single intervals I1, I2, . . . and JN+1, JN+2, . . .

Hence

U(f, P )− L(f, P ) =
N∑
i=1

(U(f, Pi)− L(f, Pi)) +

∞∑
i=1

(U(f, Ii)− L(f, Ii)) +
∞∑

i=N+1

(U(f, Ji)− L(f, Ji))

<

N∑
i=1

ε

3N
+

∞∑
i=1

(M −m)l(Ii) +

∞∑
i=N+1

(M −m)l(Ji) by (2)

<
ε

3
+

∞∑
i=1

(M −m)
ε

3(M −m)2n
+ (M −m)

ε

3(M −m)
by (3) and (4)

=
ε

3
+

ε

3

∞∑
i=1

1

2n
+

ε

3

=
ε

3
+

ε

3
+

ε

3
= ε

So we have proved that:
for each ε > 0 there is a partition P of [a, b] with U(f, P ) − L(f, P ) < ε. Hence for
each ε > 0 ∫ b

a
f −

∫ b

a
f ≤ U(f, P )− L(f, P ) < ε

whch means that ∫ b

a
f −

∫ b

a
f = 0 and so

∫ b

a
f =

∫ b

a
f

and thus f is integrable. �

We can now prove an alternative to Theorem 2 using continuity of g rather than inte-
grability.

Theorem 10 If f is integrable on [a, b] and g differs from f on at most a countable

number of points in [a, b] and g is continuous except at those points then
∫ b
a g =

∫ b
a f .

Proof.
Theorem 8 shows that g is integrable on [a, b], so by Theorem 2 the result holds. �

Example

A simple example shows that we need to take great care when formulating results.

Consider the function F (x) = [x] with domain R. Then F is differentiable on R − Z
with F ′(x) = 0, x ∈ R− Z. Clearly F is not constant on R− Z (see Theorem 3).

Since F ′ is continuous at all but a countable number of points in R, it follows from
Theorem 9, that F ′ is integrable on any interval [a, b]. Letting g(x) = 0, x ∈ R,
Theorem 10 shows that

∫ b
a F ′ =

∫ b
a g = 0.
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However, if the interval [a, b] includes an integer then F (b)− F (a) ̸= 0 so∫ b
a F ′ ̸= F (b) − F (a) and the Fundamental Theorem of Calculus doesn’t apply, since
F is not a primitive of F ′ on the whole of [a, b]. Indeed, the method in the proof of
Theorem 4 shows that F ′ doesn’t have a primitive on [a, b].

Remark

Counterexamples in Analysis by B.R. Gelbaum & J.M.H. Olmsted is an excellent source
for some of the examples used here.

Advanced stuff

We have concentrated so far on the slightly strange part of integration. But it is
precisely the strange things that lead to advances in mathematics. So let’s look at
where it takes us, and, in particular, to find out exactly which functions are integrable.

However, we shall miss out proofs, some of which either use more advanced ideas2 or
are quite tedious or both!

As Theorems 1 and 2 show, the values of the function at a finite or countable number
of points don’t affect the integral. These are examples of ‘insignificant’ sets and we
now define what we mean by ‘insignificant’.

Definition. If I = (a, b) is an open interval then the length of I is b− a and we write
ℓ(I). The length of the empty set is defined as 0.

Definition. A set S has measure zero if for each ε > 0 there is a sequence of open
intervals {In} covering S (ie S is a subset of the union of the intervals) such that
∞∑
n=1

ℓ(In) converges and
∞∑
n=1

ℓ(In) < ε.

For example, let’s suppose S consist of just the two points 0 and 1. Then let I1 =
(−1

8ε,
1
8ε), I2 = (1 − 1

8ε, 1 +
1
8ε) and In = ∅ for n > 2. Then S is a subset of I1 ∪ I2

and ℓ(I1) = ℓ(I2) =
1
4ε and

∞∑
n=1

ℓ(In) = ℓ(I1) + ℓ(I2) =
1
2ε < ε. Hence S = {0, 1} is a

set of measure zero.

It’s not difficult to show that a countable set S = {a1, a2, . . . , an, . . . } has measure

zero. Let In = (an − 2−(n+2)ε, an + 2−(n+2)ε) then an ∈ In for all n so S ⊆
∞∪
n=1

In and

∞∑
n=1

ℓ(In) =
∞∑
n=1

2−(n+1)ε = 1
2ε < ε (using the sum of a geometric series).

However, there are uncountable sets (look up Cantor set) that have measure zero.

Theorem 2 can be extended to apply to sets of measure zero.

Definition. If a function f has a property P at all points of its domain except for a
set of measure zero, then we say f has property P almost everywhere or a.e.

Now we can state exactly which functions are integrable.

Theorem 11 A bounded function is integrable on [a, b] if and only if it is continuous
almost everywhere on [a, b].

2 Such as compactness and the Heine-Borel Theorem
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In other words, we can integrate any function that is continuous except for a set of
measure zero that we can ignore.

This is the beginnings of measure theory, which is a large and important, though
difficult, part of pure mathematics.
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